
May 27th 2022 — Quantstamp Verified

Bitcoin.com

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Token Distribution Contract

Auditors David Knott, Senior Research Engineer

Alejandro Padilla Gaeta, Research Engineer

Rabib Islam, Research Engineer

Timeline 2022-04-22 through 2022-05-27

EVM Arrow Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Computer-Aided

Verification, Manual Review

Specification None

Documentation Quality Low

Test Quality High

Source Code
Repository Commit

verse-token-contracts 0309a48

verse-token-contracts 99bc608

verse-token-contracts 3950501

Total Issues 7 (5 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 0 (0 Resolved)

Low Risk Issues 2 (1 Resolved)

Informational Risk Issues 4 (4 Resolved)

Undetermined Risk Issues 1 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/bitcoin-portal/verse-token-contracts
https://github.com/bitcoin-portal/verse-token-contracts
https://github.com/bitcoin-portal/verse-token-contracts

Summary of Findings

Quantstamp has performed a security audit of the and contracts and has identified 7 security issues ranging from Low to Undetermined risk levels.

Additionally, we have found 3 documentation and 7 best practice issues. We recommend addressing all issues before deploying the smart contracts in production.

VerseToken VerseClaimer

ID Description Severity Status

QSP-1 Transfers To Zero Address Low Acknowledged

QSP-2 Undocumented Token Distribution Funding Low Fixed

QSP-3 Missing Constructor Argument Validation Informational Fixed

QSP-4 Gas Usage / Loop Concerns Informational Fixed

QSP-5 Untrusted Token Double Claim Informational Fixed

QSP-6 Signature Malleability Informational Fixed

QSP-7 Unrestricted Burns Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and
academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.3• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither contracts

Findings

QSP-1 Transfers To Zero Address

https://github.com/crytic/slither

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: VerseToken.sol

Operations in the contract do not verify that the addresses tokens are sent to are not . In particular, this might be a problem for the function

as any tokens sent by mistake to the will be irrecoverable.

Description: VerseToken address(0) _transfer
address(0)

Validate that the and operations are not transferring tokens to .Recommendation: VerseToken::L196(transfer) VerseToken::L212(transferFrom) address(0)

The Bitcoin.com team acknowledges the issue and states that they have chosen not to check for token sends to save gas and that wallets interfacing with the

contract are expected to check for token sends.

Update: address(0)
VerseToken address(0)

QSP-2 Undocumented Token Distribution Funding

Severity: Low Risk

FixedStatus:

File(s) affected: VerseClaimer.sol

Before participants can be enrolled (and have their tokens scraped), the contract must have enough s assigned to it; otherwise calls to

will fail and participants will not be able to claim their tokens. It is unclear how and when the will receive these funds.

Description: VerseClaimer VerseToken
VerseHelper::L75(_checkVerseBalance) VerseClaimer

Add technical and end-user documentation specifying how will be funded with s.Recommendation: VerseClaimer VerseToken

's was modified to instantiate the contract and mint directly to it.Update: VerseToken constructor VerseClaimer _initialSupply

QSP-3 Missing Constructor Argument Validation

Severity: Informational

FixedStatus:

File(s) affected: VerseClaimer.sol

takes in and as arguments but does not check that is a smart contract

and that is not a null byte string. The incorrect setting of any of 's arguments would require a redeployment of .

Description: VerseClaimer::L24(constructor) _verseTokenAddress _merkleRoot _verseTokenAddress
_merkleRoot VerseClaimer::L24(constructor) VerseClaimer

Modify to require to be a contract address and to not be a null byte string. Consider using

OpenZeppelin’s function to perform the contract check.

Recommendation: VerseClaimer::L24(constructor) _verseTokenAddress _merkleRoot
isContract()

QSP-4 Gas Usage / Loop Concerns

Severity: Informational

FixedStatus:

File(s) affected: VerseClaimer.sol

,Related Issue(s): SWC-126 SWC-134

Gas usage is a main concern for smart contract developers and users, since high gas costs may prevent users from wanting to use the smart contract. Even worse, some gas usage

issues may prevent the contract from providing services entirely. For example, if a loop requires too much gas to finish processing, then it may prevent the contract from functioning correctly

entirely.

Description:

The performs unbounded iteration over multiple arrays which may lead calls to run out

of gas. Furthermore, the usage of multiple arrays increases the chances of caller error.

VerseClaimer::L61(enrollRecipientBulk) VerseClaimer::L61(enrollRecipientBulk)

Add an upper bound to the number of enrollments that can process. Additionally, modify

to receive a instead of a for each parameter to increase readability and safety of usage.

Recommendation: VerseClaimer::L61(enrollRecipientBulk)
VerseClaimer::L61(enrollRecipientBulk) struct list

An upper bound of 10 enrollments was added to .Update: enrollRecipientBulk

QSP-5 Untrusted Token Double Claim

Severity: Informational

FixedStatus:

File(s) affected: VerseClaimer.sol

This issue has been classified as informational as it is only relevant if a malicious is used as ’s instead of the smart contract.Description: ERC20 VerseClaim verseToken VerseToken
A reentrancy exploit can occur when external contract calls are made. To protect against reentrancy, it is recommended to order one’s functions by:

- Perform validation checks.• checks

- Update all contract state.• effects

- Make external contract calls.• interactions

The above ordering protects one’s functions from reentrancy because by the time external contract calls are made and execution is given to a potentially untrusted contract, all contract state is

already in the most up-to-date state.

Double claims are protected against by requiring to be equal to 0. performs an external contract

call to to check 's token balance prior to setting . If an attacker can acquire control of execution from they will be able to re-claim by

calling multiple times before is set.

keeperList[_recipient].keeperTill VerseClaimer::L125(_allocateTokens)
verseToken VerseClaimer keeperTill verseToken
_enrollRecipient keeperTill

Set before checking ’s token balance to align with the checks/effects/interactions pattern. The balance check call should also use

instead of as it calls a non-state changing function.

Recommendation: keeperTill VerseClaimer staticcall
call

's 's external contract call was moved to be called after all the contract's internal state has been updated and is now in

line with the checks/effects/interactions pattern.

Update: VerseClaimers _allocateTokens _checkVerseBalance

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/utils/Address.sol#L36
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/utils/Address.sol#L36
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-126
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-134
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

QSP-6 Signature Malleability

Severity: Informational

FixedStatus:

File(s) affected: VerseToken.sol

allows signature malleability for . accepts malleable signatures, allowing a signature different from the one an signed

to be successfully submitted. This would make the permitting transaction hash different from the one the permit signer is expecting.

Description: EIP-2 ecrecover() VerseToken::L233(permit) owner

Modify 's signature check to require unique signatures by requiring signature s-values to be in the lower half of the potential range.

The (EY) defines s-value's full range as:

Recommendation: VerseToken::L233(permit) owner
Ethereum Yellow paper

* 0 < s < secp256k1n ÷ 2 + 1 (EY 311)
* With secp256k1n = 115792089237316195423570985008687907852837564279074904382605163141518161494337 (EY 313)

Open Zeppelin's contract which checks signature uniqueness can be used as a reference.ECDSA

's checks for and reverts if a signature's s-value is in the upper half of its potential range. This disables signature malleability.Update: VerseToken permit

QSP-7 Unrestricted Burns

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: VerseToken.sol

is not restricted; anyone can call it to burn their tokens. While this functionality is okay by itself, the Verse leadership’s supply mechanism might be

affected if too many tokens are burnt without their consent (the Verse white paper describes that there is a carefully designed supply mechanism planned).

Description: VerseToken::L78(burn)

Evaluate if the planned supply mechanism can be impacted by individual users burning their own tokens. If it is a problem, restrict method access

to a whitelist of users controlled by Verse.

Recommendation: VerseToken::L78(burn)

The Bitcoin.com team acknowledges the issue and states that they intend for anyone to be able to burn tokens.Update:

Automated Analyses

Slither

Slither has detected 105 results out of which most have been filtered out as false positives. The true positives have been incorporated in the findings above.

Code Documentation

1. There’s no documentation anywhere in the codebase. While most of the code is quite straightforward, it is still a good practice to document the code for improved readability and
maintainability. We recommend following the .NatSpec Format

2. Add documentation explaining why overflow/underflow protection is not necessary for ’s unchecked blocks.VerseToken

3. Modify 's minimum and maximum calculations to use OpenZeppelin's and functions to increase readability.VerseClaimer min max

No Code Documentation related code changes were found in the re-audit.Update:

Adherence to Best Practices

1. Most of the implementation of the project can be replaced with code from existing audited third-party libraries. For example, most of 's functionality can be replaced with
OpenZeppelin’s implementation (would have to inherit from the contract). Similarly, can be replaced with a call to
OpenZeppelin’s own implementation.

VerseToken

ERC20 VerseToken ERC20.sol MerkleProof.sol

2. It would be more legible to use a require statement instead of revert on . That way both the condition and the error message would be part of the same statement.VerseHelper::L27

3. If the on of the contract is 0 then execution beyond it is a no operation (no-op). Add validation on to save gas by preventing the no-op from
being executed.

scrapeAmount L200 VerseClaimer L203

4. Modify to use OpenZeppelin's interface to interact with instead of manually calculating the function signatures and using the low-level
keyword. The usage of makes the code less readable and is more error prone. If there is a reason to use add technical documentation explaining the reason.

VerseClaimer IERC20 VerseToken call

call call

5. The standard’s functionality is vulnerable to double spending when an existing allowance is being updated. If a transaction claiming the old allowance is included
before the transaction updating the allowance then both the old allowance and the new allowance can be claimed. Add end-user documentation explaining the double-spend vulnerability
and recommending users use and when modifying a non-zero .

ERC20 approve

decreaseAllowance increaseAllowance allowance

6. Modify to accept where the signature's , and values are stored compactly within 64 bytes.VerseToken::L233(permit) EIP-2098 compact signatures r s v

Best Practices Found in Re-Audit

1. contract only validates that the is larger than . Therefore, it can be set to impractically low values, thereby allowing tokens to be
scrapped, for all intents and purposes, immediately (e.g., if we set the value to 1 the tokens would be available to be scrapped a second afterwards). Add validation to 's
constructor checking that is greater than a preconfigured minimum time frame value constant.

VerseClaimer constructor _minimumTimeFrame 0

VerseClaimer

_minimumTimeFrame

No Best Practices related code changes were found in the re-audit.Update:

Test Results

Test Suite Results

https://eips.ethereum.org/EIPS/eip-2
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol#L152
https://docs.soliditylang.org/en/v0.8.13/natspec-format.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/utils/math/Math.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/utils/math/Math.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/utils/math/Math.sol#L13
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/utils/math/Math.sol#L13
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/token/ERC20/IERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.5.0/contracts/token/ERC20/IERC20.sol
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/cf68a02973de4a8745dc457a82d48ce238419980/contracts/utils/cryptography/ECDSAUpgradeable.sol#L73

Contract: VerseClaimer
Token Claimer

✓ should be able to store merkle root
✓ should be able to store token address
✓ should set createTime as blocktime (39ms)
✓ should revert if token address is invalid (247ms)
✓ should revert if timeframe is invalid (123ms)

Token Claiming Functionality
✓ should be able to enroll (129ms)
✓ should be able to enroll bulk (110ms)
✓ should not allow to enroll the same recipient twice (80ms)
✓ should not allow to enroll zero time entry (40ms)
✓ should not allow to enroll invalid values (162ms)
✓ should increase totalRequired after each entroll (99ms)
✓ should decrease totalRequired after each scrape (201ms)
✓ should store correct values (99ms)
✓ should be able enroll and scrape tokens generate two events (60ms)
✓ should throw error if working with dead token (74ms)
✓ should not allow to create allocations if contract is not funded (253ms)
✓ should be able to query remaining balance locked (50ms)

Contract: VerseToken
Token Initial Values

✓ should have correct token name
✓ should have correct token symbol
✓ should have correct token decimals
✓ should have correct token supply
✓ should return the correct balance for the given account
✓ should return the correct allowance for the given spender

Token Transfer Functionality
✓ should transfer correct amount from walletA to walletB
✓ should revert if not enough balance in the wallet
✓ should reduce wallets balance after transfer (39ms)
✓ should emit correct Transfer event
✓ should update the balance of the recipient when using transferFrom (68ms)
✓ should deduct from the balance of the sender when using transferFrom (73ms)
✓ should revert if there is no approval when using transferFrom
✓ should revert if the sender has spent more than their approved amount when using transferFrom (53ms)

Token Approval Functionality
✓ should assign value to allowance mapping
✓ should emit a correct Approval event (41ms)
✓ should allow to increase allowance (73ms)
✓ should allow to decrease allowance (79ms)
✓ should not change allowance if its at maximum (118ms)

Burn Functionality
✓ should reduce the balance of the wallet thats burnng the tokens (40ms)
✓ should not allow to burn more than user have (77ms)
✓ should deduct the correct amount from the total supply (43ms)

Permit Functionality
✓ revert if invalid permit() (53ms)
✓ should allow to adjust allowance through valid permit() (76ms)
✓ revert if invalid deadline (46ms)

42 passing (9s)

Code Coverage

was ran to determine test coverage.npm run coverage

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 100 100 100 100

MerkleProof.sol 100 100 100 100

VerseClaimer.sol 100 100 100 100

VerseHelper.sol 100 100 100 100

VerseToken.sol 100 100 100 100

All files 100 100 100 100

Changelog

2022-04-22 - Initial report•

2022-05-17 - Re-audit•

2022-05-27 - Test coverage increase•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Bitcoin.com Audit

